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Plan for Today

* Image classification

* Object detection

* Residual networks * Semantic segmentation
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* 224 x 224 images
* 1,281,167 training images, 50,000 validation images, and 100,000 test

images
* 1000 classes



AlexNet (2012)
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A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84-90, May 2012, doi: 10.1145/3065386. 4
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—-64,896—43,264—
4096—-4096-1000.

Won the 2012 Large-Scale Vision Recognition Challenge (ILSVRC) by a big
margin.

Took between five and six days to train on two GTX 580 3GB GPUs with manually

A. Krizhevsky, |. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84-90, May 2012, doi: 10.1145/3065386.
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Details

* At test time average results from five different cropped and
mirrored versions of the image

e SGD with a momentum coefficient of 0.9 and batch size of 128.

* L2 (weight decay) regularizer used.

* This system achieved a 16.4% top-5 error rate and a 38.1%
top-1 error rate.



VGG (2015)
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Details

* 19 hidden layers
* 144 million parameters
* 6.8% top-5 error rate, 23.7% top-1 error rate



ImageNet History
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Any Questions?

277

Moving on
* Image classification

* Object detection
* Semantic segmentation

11



You Only Look Once (YOLO)

* Network similar to VGG (448x448 input)
* /x7 grid of locations
 Predict class at each location

* Predict 2 bounding boxes at each location
* Five parameters -x,y, height, width, and confidence

* Momentum, weight decay, dropout, and data augmentation

e Heuristic atthe end to threshold and decide final boxes -
(hon maximum suppression)

12



Object d

etection (YOLO
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Results




Any Questions?

277

Moving on
* Image classification

* Object detection
* Semantic segmentation
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Semantic Segmentation (2015)
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Semantic segmentation results

Ground truth Result
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Any Questions?

* Finish up CNN examples (from
last time)

e Residual connections and
residual blocks

* Exploding gradients in residual
networks

e Batch normalization

e Common residual
architectures

18



Previously we saw a sequential network:

h1 — f1 :Xa ¢1] h, h, h;
hy = f5[hy, ¢ x y
h3 = f3|hy, ¢35
y = fslh3, ¢
Fully connected network: Convolutional network (e.g. 1 channel = 1 channel):

~ D h; = a [5 + W1T;—1 + Wok; + w3$i+1]
hi =a | b + Zwijil?j
j=1

3
=a |0+ E WiLi45—2
j=1
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Previously we saw a sequential network:

h, = fi[x, ¢4]

hy; = f5[hy, ¢,

h; = f3[ho, @3]
y = filh3, ¢,

Can think of as a sequence of nested functions:

y = fy [f.f% [f2 [fl [Xa (rbl]? (;52] 9 (ib‘%} 3 (,?54]

20



More layers are better...
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More layers are better... up to a point
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What’s going on?

Not completely understood, but...

Take a look at dy/dx for shallow and deep networks. Gradients of deeper
networks are much less
3)2 0 b)o , C " correlated!
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What’s going on?  The Shattered Gradient

Not completely understood, but... Phenomenon
Take a look at dy/dx for shallow and deep networks. Gradients of deeper
networks are much less
3)2 0 b)o , C " correlated!
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What'’s going on?  The Shattered Gradient
Phenomenon

x ;

y = fy [fi% [fQ [fl [Xa qbl]? (be] 9 (ib%} 3 (ibél]

The derivative of the output y w.r.t. the first layer f; is, by the
chain rule:

0f1 N 6f3 8f2 5f1

f, Impacts f, impacts f;, etc...
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Any Questions?

* Finish up CNN examples (from
last time)

* Challenges of deep networks

* Exploding gradients in residual
networks

e Batch normalization

e Common residual
architectures

26



Solution: Residual connections

Regular sequential network:

h, =1 :Xv ¢1] h, h, hs
h = Blhid) ;
h3 — f3 :h27 ¢3
Y = f4 :h37 ¢4
Residual

Residual network: ?ctio
hl — X _|_ fl [X7 ¢1]

ns
hy = h; + f5|hy, @] | | ]| ‘ |
hs = hy + falhs, ] "’9;,"1“ LR Pl P oy

y = h3 + f4]hs3, ¢,

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, http://arxiv.org/abs/1512.03385

27


http://arxiv.org/abs/1512.03385

Residual Network

ctions
X7
ST //7 |

h; = x + f1[x, ¢4

hs = hy + 13 -hz, ¢3- Q) Y ] |

| b I ____I _______ __ LN
S Sl B B

y = h3 + 4]

Substituting in:

Residual

y =x + fi[x]

+ £
+ f3

+ 14

:_X + 1 [x]]
X + fi[x] + f2|x + £ [X]H

:X-l—fl[x] + £, [X_|_ fl[xﬂ + 3 [X+ f)[x] + f5 [X + fl[X””

28



Residual Network

> fl f1[x]
We can unravel all the possible paths ———
> f1 NYang f2 - 1
The output is the sum of the input plus —
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Residual Network as Ensemble of Networks

X

” Yy

DR

£, |:X + i [x] + o [x + fi[x]] + 3 [X + f1 [x] + fo [x + £1[x]]

| IS

. f1 f1[x]
PN fo|x + f1[x]
> fl M\l f2 [ ]
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Residual Network as Ensemble of Networks

X
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Residual Network as Ensemble of Networks

o fy Ll During training, the model can
e ) e o+ i[x] amplify or atjcenuate the different
L paths to achieve the best results
) \
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Order of operations is important

a)

b)

C)

x b

x — (R~ e

_—{ReLUHLinea r}’é"

Can only add to the residual
because of the RelLU

More flexible approach to end
with linear block.

Starting with linear block gives
us some flexibility on spatial
resolution.

Note: if we start with a RelLU,
then will clamp negative values
and so do nothing

33



This helps increase depth
up to a point...



Any Questions?

277

* Challenges of deep networks

e Residual connections and
residual blocks

* Exploding gradients in residual
networks

e Batch normalization

e Common residual
architectures

35



Exploding Gradients in Residual Networks

1 4

With He initialization we
can control the variance

inside the block
inside the bloc But variance doubles when

we add the residual back
in. And then grows exponentially.




Exploding Gradients in Residual Networks
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Could stabilize by renormalizing after
adding each residual.

More common to apply batch normalization.

37



Plan for Today

* Finish up CNN examples (from
last time)

* Challenges of deep networks

e Residual connections and
residual blocks

* Exploding gradients in residual
networks

e Batch normalization

e Common residual
architectures

38



Batch Normalization (a.k.a. BatchNorm)

x —L BN}/ f; ]—»@%——» * egfa[BNJ—»[ f5 ]—»39—»

e Shifts and rescales each activation so that its mean and variance
across the batch become values that are learned during training

S. loffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs],
Mar. 2015, http://arxiv.org/abs/1502.03167 39
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Batch Normalization (a.k.a. BatchNorm)

B BN B

e Shifts and rescales each activation so that its mean and variance
across the batch become values that are learned during training

Calculate the sample mean and
standard deviation for each hidden unit
across samples of the batch.

my, = %Zh@

1
s, = @ Z(h@ —mp)?.

40



Batch Normalization (a.k.a. BatchNorm)

x —L BN}/ f; ]—»@%——» * egfa[BNJ—»[ f5 ]—»39—»

e Shifts and rescales each activation so that its mean and variance
across the batch become values that are learned during training

Calculate the sample mean and Standardize (normalize) to zero-mean and
standard deviation for each hidden unit unit standard deviation.
across samples of the batch. A
3 i — Mp :
h?; < n Vi € B,
mp = h; Shp T €
Bl 5>

eB

Scale by y and shift by §, which are learned

1
Sy = \/? Z(h@ —mp)?. arameteﬁs Vi e B.

1€B

41



Batch Normalization (a.k.a. BatchNorm)

i e L g

* Applied independently to each hidden unit

» Standard FC Network with K layers, each with D hidden units:
KD learned scales, y , and KD learned offset, 6

* Convolutional Network with K layers, each with C channels:
KC learned scales, y , and KC learned offset, 0

42



Benefits of BatchNorm

1 2 3

Stable forward propagation

* Initialize offsets § to zero and scales y to 1
* Variance now increases linearly
» k" block adds one unit of variance to variance of k

* At initialization, later layers make smaller relative change to
overall variation

* During training, the scales can increase in later layers if helpful
—>control the effective depth

43



Benefits of BatchNorm

Supports higher learning rates
Makes the loss surface smoother (reduces shattered gradients)

a) Residual b) No residual

connections connections

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the Loss Landscape of Neural Nets,”
arXiv.org, https://arxiv.org/abs/1712.09913v3

44
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Benefits of BatchNorm

Regularization via added noise

BatchNorm injects noise since BN scale and shift depend on batch
statistics

45



Disadvantages of Batch Normalization

e Batch normalization makes
results dependent on what else

IS In the same batch.

* Much more likely if you group on
target value.

* Layer normalization instead?
e Similar spirit.

* Normalize hidden layer
activations of same input.

* Both actively used nowadays.




Any guestions?
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* Challenges of deep networks

e Residual connections and
residual blocks

* Exploding gradients in residual
networks

e Batch normalization

47



ResNet (2015)

ResNet Block

>[BN HReLUHConv 3% 3]—>[ BN HReLU]*[Co nv 3X 3} '%-P

Bottleneck Residual

—L>{BN > ReLUF>| Conv 1x1 |»{BN|>ReLU Conv 3x3 > BN}>{ReLUl>| Conv 1x1 }—»A’ﬁ—»

Reduce Increase
channels by — 4 X 4.channels by
factor of four factor of four

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,
. - 48
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Resnet 200 (2016) for ImageNet
Classification
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K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,
http://arxiv.org/abs/1512.03385 49


http://arxiv.org/abs/1512.03385
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DenseNet

Concatenate to output Concatenate to output Concatenate to output
W
3 channels 32+3=35 channels 32+35=67 channels 32+67=99 channels

Figure 1: A 5-layer dense block with a growth rate of £ = 4.
Fi gu refrom UDL Each layer takes all preceding feature-maps as input.

Figure from paper

Huang, G., Liu, Z.,Van Der Maaten, L., & Weinberger, K. Q. (2017b). Densely connected convolutional
networks. IEEE/CVF Computer Vision & Pattern Recognition, 4700-4708. 51



U-Net (2016)

Crop and concatenate

Crop and concatenate

Crop and concatenate
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Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. International

52
Conference on Medical Image Computing and ComputerAssisted Intervention, 234-241.



U-Net Results

Figure 11.11 Segmentation using U-Net in 3D. a) Three slices through a 3D
volume of mouse cortex taken by scanning electron microscope. b) A single U-
Net is used to classify voxels as being inside or outside neurites. Connected
regions are identified with different colors. c¢) For a better result, an ensemble of
five U-Nets is trained, and a voxel is only classified as belonging to the cell if all
five networks agree. Adapted from Falk et al. (2019). 53



Stacked hourglass networks for Pose Estimation

\

Targets Output heatmaps Estimated pose

Output
heatmaps

Hourglass block Hourglass block

Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. European Conference on Computer Vision, 483-499.
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Feature Pyramid Networks

predict

ﬁ

A

(a) Featurized image pyramid

predictl
: [predict]

A———+—» predict

(b) Single feature map

=

(d) Feature Pyramid Network

predict

predict

A

(c) Pyramidal feature hierarchy

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which 1s slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) 1s fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,”in 20717 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936-944. doi:

10.1109/CVPR.2017.106.
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Feature Pyramid Networks

/ ' /L*{ predictJ
/4--*.--  predict

" /«:’i” IO | }predict‘

predict

Figure 2. Top: a top-down architecture with skip connections,
where predictions are made on the finest level (e.g., [28]). Bottom:
our model that has a similar structure but leverages it as a feature
pyramid, with predictions made independently at all levels.

Figure 3. A building block illustrating the lateral connection and
the top-down pathway, merged by addition.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,”in 20717 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936-944. doi: 56
10.1109/CVPR.2017.106.
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Any Questions?

277

* Challenges of deep networks

e Residual connections and
residual blocks

* Exploding gradients in residual
networks

e Batch normalization

e Common residual
architectures

57
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